
Proceedings of the 2023 Winter Simulation Conference

C. G. Corlu, S. R. Hunter, H. Lam, B. S. Onggo, J. Shortle, and B. Biller, eds.

MODELING AND SIMULATING STREAM PROCESSING PLATFORMS

Alonso Inostrosa-Psijas
Roberto Solar

Mauricio Marin

Escuela de Ingeniería Informática Universidad de Santiago de Chile and

Universidad de Valparaíso Centro de Bioinformática y Bioingeniería, CeBiB

General Cruz 222 Av. Libertador Bernardo O'Higgins 3363

Valparaíso, CHILE Santiago, CHILE

Verónica Gil-Costa Gabriel Wainer

Universidad Nacional de San Luis and Dept. Of Systems and Computer Engineering

CONICET Carleton University

Ejército de Los Andes 950 1125 Colonel By Drive

San Luis, D5700HHW, ARGENTINA Ottawa, ON K1S 5B6, CANADA

ABSTRACT

Stream processing platforms allow processing and analyzing real-time data. Several tools have been

developed for these platforms to guarantee that the applications running on them are scalable, fast, and

fault-tolerant and that they can be deployed on many processors. However, determining the proper

number of processors suitable to hold a given stream processing-based software application is

challenging, especially if the application is intended to serve a large user community. In this paper, we

propose to model and simulate stream processing platforms for performance evaluation purposes. In our

case study, we simulated a commonly used application for the analysis of Twitter streams with Storm. We

evaluate its performance under different workloads. Our simulator supports profiling to measure various

aspects of the application's performance. Results show that the simulator can replicate the metrics

reported by the application running on a real platform with minimal error.

1 INTRODUCTION

Stream processing platforms are devised to manage substantial amounts of data from diverse sources,

whether these are feeds in a social network, advertisement networks, businesses, or scientific applications.

Usually, these systems require a real-time view of the data so human users can understand them.

However, the high volume of data arriving from diverse sources makes it impossible to store these data,

such as model-based on a data warehouse. In other words, stream processing platforms need to process

large amounts of data within a few seconds, with very low latency and high throughput, to produce some

knowledge or information out of the data. Therefore, the processing speed must be kept up with the

incoming data rate while providing high-quality analysis of results as fast as possible. Additionally, the

application components and the infrastructure must be fault-tolerant.

Stream processing is a distributed computing method that supports gathering and analyzing large

volumes of a heterogeneous data stream to assist real-time decision-making as explained in Andrade et al.

(2014). Stream programs use message-passing in a collection of computers connected by data channels or

979-8-3503-6966-3/23/$31.00 ©2023 IEEE 3130

20
23

 W
in

te
r S

im
ul

at
io

n
C

on
fe

re
nc

e
(W

SC
) |

 9
79

-8
-3

50
3-

69
66

-3
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
W

SC
60

86
8.

20
23

.1
04

07
84

0

Authorized licensed use limited to: Carleton University. Downloaded on April 20,2024 at 14:10:15 UTC from IEEE Xplore. Restrictions apply.

Inostrosa-Psijas, Gil-Costa, Solar, Marin, and Wainer

links. Each computer includes a variety of processing units or processing elements (PEs) that are used to

process and transfer data from its input message queue and produce results on its output queue. Each PE

has an independent address space, while all dependencies between the processing units are made

explicitly by message channels or links. Several stream processing platforms like Storm, Spark, Heron,

Flink, Samza, and more have been developed.

In this work, we model and simulate stream processing platforms to evaluate their performance under

different situations. We used Apache Storm as a case study. Storm is a widely used stream processing

engine. Storm focuses on extremely low latency and requires near real-time processing. As a result, it can

process enormous quantities of data and deliver results with less latency than other solutions. Although

Twitter (the company that originally developed Storm) replaced it with Heron, the Storm platform has

been successfully used by other well-known companies like Spotify, Flipboard, the Weather Channel,

WebMD.com, among many others. Furthermore, research is still ongoing on Storm, including scheduling

algorithms and resource allocation mechanisms. See the work presented by Muhammad et al. (2021),

Hoseiny Farahabady et al. (2021a), Muhammad and Aleem (2021), Hoseiny Farahabady et al. (2021b).

Although this research focuses on Storm, our model and simulation tool can be adapted to other platforms

because we use a modeling methodology based on the design of individual interconnected components

that can be replaced according to the characteristics of the platforms, the simulated hardware that supports

them. Similarly, the connections between the components are defined by the task flow.

Our case studies use a Storm application of a Twitter stream analysis consisting of eight PEs, and

communication among them is performed bottom-down. We aim to evaluate the platform’s performance

under different workloads to detect bottlenecks. To this end, we present the SimStream tool for simulating

stream processing applications running on a stream processing platform, in this case, Apache Storm. The

scope of our simulator includes Apache Storm, the hardware of the multi-core cluster where it is

deployed, and the communication network. Next, we validate our simulation tool against a real

application implemented on Storm. Finally, we evaluate the utilization of each PE as we vary the arrival

rate of the tweets and replicate the more computationally intensive processes.

Results show that our simulator can be used as a testbed for predicting the performance of an

application running on top of a stream processing engine with different levels of replication.

This paper is organized as follows. Section 2 describes stream processing platforms, particularly the

Apache Storm platform. Section 3 presents related works. Our proposed tool, SimStream, is presented in

Section 4. Section 5 presents a case study and Section 6 presents the experimental results. Finally, we

present our conclusions in Section 7.

2 BACKGROUND

Stream programming has been proposed as a flexible approach for processing data originating at various

sources on a distributed cluster. However, the data stream arrives at unpredictable times and may have

dynamic variations in traffic intensity. In this context, storing and organizing the incoming data

conveniently to process them in batches can be very costly, given the massive volume of data and the

number of computational resources required for processing them. Nevertheless, even if this is feasible, it

is often desirable or even imperative to process the data as soon as it is detected, and to deliver results in

real-time.

To process data "as soon as it arrives", stream processing aims to process data in real-time in a fully

integrated way to provide information and outcomes for consumers and end users. Also, it aims to

integrate added information to support decision-making in the medium and long term. There are many

stream processing platforms such as SPC (Stream Processing Core) as presented in Amini et al. (2006),

Storm proposed by Toshniwal et al. (2014), Esc of Satzger et al. (2011), D-Stream of Zaharia et al. (2013)

and, more recently, Heron presented by Kulkarni et al. (2015). In the following sections, we describe the

main components of the Storm stream processing platform, which we used in our research.

3131Authorized licensed use limited to: Carleton University. Downloaded on April 20,2024 at 14:10:15 UTC from IEEE Xplore. Restrictions apply.

Inostrosa-Psijas, Gil-Costa, Solar, Marin, and Wainer

2.1 Storm

Apache Storm, described in Toshniwal et al. (2014), is a real-time, fault-tolerant, and distributed stream

processing system developed by Twitter. Ever since its open-source release in 2011, the Apache

Foundation have incubated Storm. Even though Twitter replaced Storm and it is now using Heron

presented in Kulkarni et al. (2015), the platform has been successfully used by well-known companies

like Spotify, Flipboard, the Weather Channel, WebMD.com, and others (Storm 2015). Similarly,

researchers still devote their efforts to improving Storm’s efficiency. TOP-Storm is a scheduler for Storm

that optimizes resource utilization and increases throughput by performing resource-aware task allocation

(Muhammad et al. 2021). A3-Storm presented in Muhammad and Aleem (2021) is a scheduler

implemented on top of Storm that optimizes resource usage in heterogenous clusters based on the

topology of the applications and their traffic. The work of Hoseiny Farahabady et al. (2021a) focuses on a

controlling strategy for optimizing the energy consumption of running applications. Hoseiny Farahabady

et al. (2021b) have developed an elastic solution for resource sharing in Storm.

Storm provides a set of general primitives for defining applications for performing real-time

computation. A Storm application comprises five major components: tuples, streams, spouts, bolts, and

topologies. A tuple is an ordered list of elements. For example, in Twitter, a tuple might be a text

composed of the tweet name, followed by the tweet itself (e.g., < ”I3M2018”, ”Deadlineapproaching”

>). A stream is a sequence of tuples, potentially unbounded. There is a sequence of arriving tuples,

which form a stream, and these tuples are processed potentially one at a time.

Storm applications are called topologies. A topology is a directed graph whose vertices correspond to

processing elements or operators (called spouts and bolts), and edges represent the data flow among them.

Topologies can contain loops, but in this case, the programmer must be careful not to create infinite loops

where tuples can go around the system in endless processing.

Figure 1: Logical layers of a Storm application.

In a Storm topology, spouts correspond to the source of streams. Usually, tuples are captured from an

external source like a crawler or a database. A spout can generate multiple streams simultaneously. On the

other hand, bolts process streams by performing a given task or operation on each tuple. They process a

large amount of data and process it fast. Typically, each bolt processes one input stream, but they can

process multiple input streams as well, generating an output stream used to feed other bolts. Some

operations that a bolt can perform are:

• Filter: Forwards a tuple only if it satisfies a condition.

• Joins: When receiving multiple streams, say A and B, it computes a cross product of all the tuples

and streams A and B, and for every pair of tuples, one from A and one from B, it returns the

results of the process if the pair of tuples satisfy a given condition.

• Apply/transform: Modifies a tuple according to a function.

• Ticker: Control tuples are emitted periodically at regular intervals.

Figure 1 shows an example of a logical layer of a Storm topology. Here we have two spout processing

units and four bolts processing units. The two spouts gather streams from various sources. Then, they

send the incoming tuples forming streams to different bolts. The links between the processing units

represent the flow of the data stream.

3132Authorized licensed use limited to: Carleton University. Downloaded on April 20,2024 at 14:10:15 UTC from IEEE Xplore. Restrictions apply.

Inostrosa-Psijas, Gil-Costa, Solar, Marin, and Wainer

Several replicas - running in parallel into multiple processes or tasks - can be deployed to speed up

bolt execution. Thus, incoming streams can be distributed among these tasks. The assignment of tuples

among the bolt replicas (or tuple routing) is decided by a grouping strategy. Some of the most popular

grouping strategies supported by Storms are the Shuffler Grouping, the Fields Grouping, and the All

Grouping. The first distributes the tuples in a round-robin fashion over the bolt’s replicas. The second one

groups a stream by a subset of its fields and sends each tuple to its corresponding group using a hash

function. The last one, where all the tasks in the bolt receive all the input tuples, is helpful for the join

operation.

2.1.1 Storm Cluster

In a Storm cluster, topologies are submitted to a head node that runs a daemon called Nimbus. The

Nimbus is responsible for distributing and coordinating the execution of the topology. Then, Nimbus

distributes the code of the application around the cluster so when a bolt is started in a computer of the

cluster, Nimbus is responsible for sending the code for that bolt to that computer. Also, when a bolt is

split up into multiple tasks, Nimbus decides which tasks run on which computer.

Additionally, Nimbus is responsible for failure detection to potentially restart the tasks or the bolts on

other computers of the cluster. A tuple is considered failed when its topology of resulting tuples fails to be

processed within a given timeout. That is, when a tuple is emitted by the spout, the tuple has a message-id

that will be used to identify the tuple later. Then, the tuple flows through the graph of bolts forming the

topology of the application and when a tuple is fully processed, an ack method is called on the originating

spout task with the message id. Likewise, if the tuple times out, a failure method is called on the spout

and the tuple will be replayed. Note that a tuple will be acknowledged or failed by the exact same spout

task that created it.

The worker nodes run a daemon called Supervisor which listens for work assigned to its computer.

The worker nodes execute the topology’s components (spouts and bolts). Each worker runs one or more

executors inside a Java Virtual Machine, and executors are formed by one or more tasks. Note that tasks

are executed by the actual work of a bolt or a spout. Each worker node keeps track of the tasks that are

running at itself, so if any of these tasks crash, it can be either re-started, or the Supervisor can ask

Nimbus for a new task that needs to be run in its place. Finally, Storms also use the Zookeeper system,

which maintains the state of the cluster and coordinates the Nimbus and the Supervisors.

3 RELATED WORK

Simulation and stream processing platforms has been studied in the research literature in the area. In

Amarasinghe et al. (2018), the authors present a simulator named ECSSim to place processing operators

of the platform either on cloud nodes or edge devices. This simulator is extended in Amarasinghe et al.

(2020), where they present a simulation toolkit named ECSNeT++ for stream processing platforms. The

simulator is implemented on top of the network simulator OMNeT++. In both cases, the simulators are
devised for Edge computing and IoT. Thus, it is not possible to use commodity switch-based networks

like the Fat-Tree. In Kroß and Krcmar (2019), the authors propose a domain-specific language (DSL) to

model the characteristics of Spark and YARN applications. Their proposal automatically extracts the

model’s specifications and transforms them into an evaluation tool.

In Gil-Costa et al. (2016), the authors proposed an asynchronous simulation protocol that can be

executed in the S4 stream processing platform. This simulator was developed to simulate the execution of

user queries in a Web search engine. The proposed simulator controls the virtual time advance at each

Logical Process (LP), employing two barriers. The first barrier consists of a time window that allows the

processing of events with timestamps within the time window. The second barrier is based on an oracle

time barrier used to adaptively compute the value of the time window across the simulation. The two

barrier-based mechanisms reduce the number of straggler events - in an asynchronous simulation - across

3133Authorized licensed use limited to: Carleton University. Downloaded on April 20,2024 at 14:10:15 UTC from IEEE Xplore. Restrictions apply.

Inostrosa-Psijas, Gil-Costa, Solar, Marin, and Wainer

the LPs. Even though the case study of Gil-Costa et al. (2016) simulates a Web Search Engine, the

authors mention the possibility of modeling and simulating a Stream Processing platform using this

simulator.

Flow, presented in Park et al. (2010), is a parallel and distributed platform for simulating stream

processing applications. It does not include hardware or software components of the stream processing

system. Instead, it is designed to capture the data flow at the application level. Flow uses a hybrid

conservative synchronization approach, where local events are processed in LBTS (lower bound time

stamp) order, whereas events spanning across super-processes resort to conservative synchronization.

There are simulators for some stream processing cloud environments like CEPSim presented by

Higashino et al. (2016). CEPSIm was used to study the scalability and performance of complex event

processing (CEP) systems and the effects of different query processing strategies on cloud platforms. It is

focused on the processing of queries. CEPSim was built on top of the CloudSim tool. RStorm (Kaptein

2014) is an R package for developing and evaluating streaming algorithms. RStorm is a simulation

package intended to help developers analyze and evaluate their streaming algorithms easily and without

the difficulties of actual implementation to a given stream processing platform. RStorm resorts to Storm’s

terminology and concepts, providing a graphical representation of streaming algorithms. However, this

package analyzes the algorithm and does not include the associated hardware costs (like communication,

multiple threads per node, etc.).

4 SIMSTREAM SIMULATION TOOL

The simulation model is implemented as a process-oriented simulator. Processes represent bolts/spouts in

charge of tuples processing. Resources are artifacts such as the data of the incoming messages, global

variables like the input queue of each process, the CPU, and the communication network. The simulation

program is implemented using libCppSim (Marzolla 2004), where each process is implemented by a

coroutine that can be blocked and unblocked during simulation.

4.1 Simulation

The operations hold(), passivate(), and activate() are used for this purpose. Thus, a coroutine 𝐶𝑖 can be

paused for a given amount of time 𝛿𝑡 -which represents the duration of a task. Once the simulation time

𝛿𝑡 has expired, the coroutine 𝐶𝑖 activates itself if a hold() operation was previously executed. Otherwise,

the coroutine 𝐶𝑖 is activated by another coroutine 𝐶𝑗 using the activate() operation. This last case allows

the representation of the interaction among the different components of the simulated platform.

Our simulator includes the nodes of the topology. These nodes transfer tuples (data) from one to

another as defined by the topology. Each node can play the role of a bolt or a spout. The nodes can be

allocated into the same physical processor or into different processors. The allocation process is

transparent to the application but involves different communication costs. Nodes located in the same

physical processor communicate at a lower cost than nodes hosted by different processors. Each processor

has cores, Ram, and Cache memory. The least recently used (LRU) replacement policy is used for both

memories. The sizes of the memories are set by the parameters of the simulator. A function called

schedule_processing(), is used to schedule the tasks of the bolts/spouts into the processor’s cores.

Each processor has a network interface that divides the messages into packages before sending them

through the communication network. Likewise, the network interface gathers the packages belonging to

the same message upon reception. In this work, we simulate the switches of a Fat-Tree network described

in Al-Fares et al. (2008), however, it can be easily replaced by other networks.

The following characteristics are considered in our simulator:

• Different topologies can be simulated simultaneously. Different users may deploy their

applications into the same platform at the same time.

3134Authorized licensed use limited to: Carleton University. Downloaded on April 20,2024 at 14:10:15 UTC from IEEE Xplore. Restrictions apply.

Inostrosa-Psijas, Gil-Costa, Solar, Marin, and Wainer

• Spouts and/or bolts can be deployed to the same machine or to different machines according to

their communication pattern.

• The machines of the simulated cluster can be heterogeneous. They may have different memory

sizes and different numbers of cores, among others.

• The communication between two processing elements (bolts/spouts) located in different machines

is performed via a simulated Fat-Tree network.

• A First Come First Service policy is used when choosing the next spout/bolt to be executed.

• Tuples communicated among bolts follow the publish-suscribe pattern. In case of saturation, no

tuples are dropped, instead they are queued at the publisher bolt.

4.2 Communication Network

We simulate the Storm platform deployed in a datacenter composed of N racks holding k processors each,

which communicate to each other by means of a set of switches composing a Fat-Tree network topology

as shown in Figure 2. This is a three-level network where switches and processing nodes are organized

into PODs (Points of Delivery) which can be regarded as racks. Each POD consists of (𝑘/2)2 processing

nodes and two layers of 𝑘/2 k-port switches from the two bottom layers.

At the top, we have the Core switches, which provide inter-POD communication. At the bottom are

the Edge switches, where the processing nodes are connected to the network. Finally, in the middle, there

are the Aggregation switches. This type of network allows an elevated level of parallelism, avoids

congestion, and allows fault tolerance by providing different routes for sent messages depending on their

destination by means of a two-level routing table.

4.3 Simulation Parameters

Three configuration files are needed to set up the parameters of a simulation: one for the topologies,

another for specifying the parameters of each spout/bolt, and a third optional file can be used to define

different tuple arrival rates during the simulation. The topologies files consist of pairs of spout/bolts

source and target of tuples. For specifying the parameters of each spout/bolt, the file must contain the

name of each node of the defined topology and the node type (spout/bolt), the replication level, the

grouping type, and the IP address of the machine where it is hosted (according to the Fat-Tree). If the

node is a spout, the previous values are followed by the name of a random generation number function

and its corresponding parameters for representing the average service time and, finally, the average arrival

rate of tuples. If the node is a bolt, the following values are the number of output tuples for each tuple that

is processed and the name of a random generation number function and its corresponding parameters for

representing its average service time. The third file includes the arrival parameter and the simulation time

when it should start.

More details regarding this simulation model, configuration files format, and its code implementation

can be found in our public SimStream GitHub repository.

5 CASE STUDY

In this paper, we simulate a popular real-time processing application example (Marçal 2017).The

topology consists of two simple components: kafka producer - a simple producer in charge of reading

tweets from the Twitter Streaming API and storing them into Apache Kafka -, and twitter processor - a

Storm topology that reads tweets from Apache Kafka and processes them in a parallel fashion in order to

perform, on one hand, compute sentiment analysis and, on the other hand, compute top-k hashtag.

The Storm topology consists of the following components (shown in Figure 3): kafka spout – an

Storm-specific adapter in charge of reading tweets from Kafka into the Storm topology, twitter filter –

3135Authorized licensed use limited to: Carleton University. Downloaded on April 20,2024 at 14:10:15 UTC from IEEE Xplore. Restrictions apply.

Inostrosa-Psijas, Gil-Costa, Solar, Marin, and Wainer

bolt in charge of filtering out all non-English language tweets in order to properly apply the sentiment

analysis algorithm, text sanitization - bolt in charge of text normalization in order to properly process

Figure 2: 3-Layer Fat-Tree topology.

tweets by the sentiment analysis algorithm, sentiment analysis - bolt in charge of scoring the tweet by

each of its words using SentiWordNet classifier, sentiment analysis to cassandra – a bolt in charge of

storing the tweets and its sentiment score into a Cassandra database, hashtag splitter – a bolt in charge

of splitting the different hashtags and emitting a tuple per hashtag to the next bolt (hashtag counter),

hashtag counter - bolt in charge of counting the number of occurrences of a hashtag, top hashtag bolt in

charge of performing a ranking of the top-k hashtags by means of a sliding windows algorithm, and top

hashtag to cassandra - bolt in charge of storing the top-k hashtags into a Cassandra database. Cassandra

is a widely used open-source, distributed, scalable and elastic NoSQL database.

Figure 3: Storm topology of the Twitter streams analyzer.

6 EXPERIMENTAL RESULTS

In this section, we present the evaluation of our proposed Storm simulator (SimStream) in terms of

throughput, response times, and utilization. Experiments were performed in an Intel Xeon CPU E5-2650

v2 2.60 GHZ (with 32 cores) and 128 GB of Ram, running Ubuntu 14.04.5 LTS. The simulator was

implemented on top of the libcppsim library version 0.2.5 presented by Marzolla (2004), and it was

compiled with GCC V.4.8.5. All the simulated bolts have been properly instrumented to measure and

record tweet arrival times, bolts service times and the number of output tuples per bolt.

The process executed by the stream application on the Storm platform has been deployed using the

following technologies: messaging system - Apache Kafka (version 2.12 − 1.0.1), stream processing

system - Apache Storm (version 1.1.1), and storage - Apache Cassandra (version 3.11.2). All

components run over a Zookeeper (version 3.4.11) cluster.

Figure 2.(a) and Figure 2.(b) show the tweet response times and the throughput (number of tweets

processed per second), respectively. Both figures show the results of three Storm real executions

compared to results obtained from our simulator (SimStream). We show the average results obtained

with different execution of the simulations. Furthermore, SimStream allows generating random

numbers by using two different mechanisms: curve fitting - which fits the given data (data sizes) by

applying a maximum likelihood estimation method, and spline interpolation - which fits the given data

by means of a piecewise polynomial function. Both mechanisms have been fed with logs obtained from

isolated executions of the Storm topology.

3136Authorized licensed use limited to: Carleton University. Downloaded on April 20,2024 at 14:10:15 UTC from IEEE Xplore. Restrictions apply.

Inostrosa-Psijas, Gil-Costa, Solar, Marin, and Wainer

In Figure 2.(a), we observe that real and simulated tweet response times have a similar tendency.

These results can be contrasted with mean squared error (MSE) reported in Table 1. On one hand, the

curve fitting approach reports MSEs close to 0.00001 with a mean of 0.00013474 and a standard

deviation of 0.00009726. On the other hand, the spline interpolation approach shows a resemble

behavior with a mean of 0.00013237 and a standard deviation of 0.00009635. In Figure 2.(b), we observe

that real and simulated throughput have a similar behavior through time. Notice that the throughput is

almost constant, that is because the available resources to process the data is limited. Thus, even though

the arrival stream changes (increases), the resources will be saturated and the output of the system will

reach its maximum. Furthermore, these results can be contrasted with MSE reported in Table 2. Both

approaches, curve fitting and spline interpolation, show a mean close to 0.00001 and a standard

deviation close to 0.00009. Therefore, the results show that our SimStream tool accurately simulates

the Storm platform’s behavior.

Figure 2: (a) Tweet processing response time. (b) Throughput.

Table 1: Mean squared error obtained for the tweet processing time.

Storm execution Curve fitting Spline interpolation

1 0.0000626465 0.0000609966

2 0.0001996262 0.0001967055

3 0.0001419408 0.0001394227

 Mean Stddev Mean Stddev

 0.00013474 0.00009726 0.00013237 0.00009635

Table 2: Mean squared error obtained for the throughput.

Storm execution Curve fitting Spline interpolation

1 0.0001636884 0.0001242584

2 0.0003988999 0.0004130434

3 0.0001734087 0.0001712610

 Mean Stddev Mean Stddev

 0.00024533 0.00018821 0.00023619 0.00021914

6.1 Level of Bolt Utilization without Replication

The tweet arrival rate, represented by a negative exponential distribution, has been parametrized by a

location parameter and a non-negative scale parameter. The initial scale parameter value has been

extracted from a Storm log by applying a maximum likelihood estimation method. The value of the scale

3137Authorized licensed use limited to: Carleton University. Downloaded on April 20,2024 at 14:10:15 UTC from IEEE Xplore. Restrictions apply.

Inostrosa-Psijas, Gil-Costa, Solar, Marin, and Wainer

parameter has been progressively decreased to emulate changes in the tweet arrival rate. Figure 3 shows

the level of utilization per bolt varying the tweet arrival rate. The utilization of a bolt is simply the ratio of

the average time the bolt was busy and the total period of observation, thus the utilization is calculated as

𝑈𝑏 = 𝐵𝑏/𝑅𝑏/𝑇, where 𝐵𝑏 is the sum of time in which the bolt was busy, 𝑅𝑏 is the number of replicas of

the bolt, and 𝑇 is the total simulated time.

In Figure 3, we can observe that the twitter filter bolt tends to be saturated as the tweet arrival rate

increases. This behavior occurs because of the high number of incoming processing requests per time unit

arriving at this bolt, turning it into a bottleneck. Furthermore, we can see that the sentiment analysis to

cassandra bolt is tightly coupled with the twitter filter bolt since as the level of utilization of the twitter

filter bolt is increased the level of utilization of the sentiment analysis to cassandra bolt is increased as

well (close to 46% for high tweet arrival rates). We must consider that not all tweets processed by the

twitter filter bolt are emitted to the next bolt and that is why the sentiment analysis to cassandra bolt is

not fully saturated, but for being a disk access bolt is a bottleneck by itself. Unlike the sentiment analysis

to cassandra bolt, the top hashtag to cassandra bolt does not write on disk on demand since disk

accesses are managed by tick tuples (the database is periodically updated each ∆𝑡), and that is why its

level of utilization is maintained as the tweet arrival rate is increased.

Figure 3: Utilization per bolt using the standard configuration (no replication).

6.2 Level of Bolt Utilization with Replication

Figure 6 shows the level of utilization per bolt varying the tweet arrival rate and the number of twitter

filter bolt replicas. Figure 4.(a) shows the impact of two twitter filter bolt replicas over the topology. We

observe that the twitter filter bolt and the sentiment analysis to cassandra bolt tend to have similar

behavior in terms of the level of utilization, close to 100% for high tweet arrival rates. Figure 4.(b) shows

the effect of eight twitter filter bolt replicas over the topology. We observe that the level of utilization of

the twitter filter bolt decreased to a value lower than 27% for all cases. Nevertheless, we also observe

that the level of utilization of the sentiment analysis to cassandra bolt is drastically increased in

comparison to the level of utilization of the twitter filter bolt, which indicates the need for replication of

the sentiment analysis to cassandra bolt. In general, as we add twitter filter bolt replicas, the level of

utilization of twitter filter bolt is decreased. Still, the level of utilization of the sentiment analysis to

cassandra bolt tends to be increased. This behavior is produced because as we increase the number of

twitter filter bolt replicas, the number of incoming tweets to be processed by the next bolts is

incremented proportionally to the number of replicas.

Figure 5 shows the level of utilization per bolt varying the tweet arrival rate and the number of

sentiment analysis to cassandra bolt replicas, and with four replicas of the twitter filter bolt. Figure

5.(a) shows the level of utilization per bolt of the Storm topology with two sentiment analysis to

3138Authorized licensed use limited to: Carleton University. Downloaded on April 20,2024 at 14:10:15 UTC from IEEE Xplore. Restrictions apply.

Inostrosa-Psijas, Gil-Costa, Solar, Marin, and Wainer

cassandra bolt replicas. The level of utilization of the sentiment analysis to cassandra bolt decreases in

comparison to results reported in Figure 4. Nevertheless, the level of utilization of the sentiment analysis

to cassandra bolt is still close to 100% for high tweet arrival rates. Figure 5.(b) shows the level of

utilization per bolt of the Storm topology with eight sentiment analysis to cassandra bolt replicas,

respectively. Results show that the level of utilization of the sentiment analysis to cassandra bolt is

decreased to a value close to 23%. Even so, the level of utilization of the twitter filter bolt is maintained

close to 100% for high tweet arrival rates.

Figure 4: Utilization per bolt with different levels of twitter filter bolt replication (a) 2-times replicated

and (b) 8-times replicated.

Figure 5: Utilization per bolt with 4-times replicated twitter filter bolt (fixed) and different levels of

sentiment analysis to cassandra bolt replication: (a) 2-times replicated, (b) 8-times replicated.

Figure 6 shows the level of utilization per bolt varying the tweet arrival rate and the number of

sentiment analysis to cassandra bolt replicas and fixing the number of twitter filter bolt replicas to

eight. Figure 6.(a) shows a reduction in terms of the level of utilization of the sentiment analysis to

cassandra bolt by using two replicas but is still close to 100% for high tweet arrival rate. Figure 6.(b)

shows how the level of utilization of the sentiment analysis to cassandra bolt is decreased to values

close to 24% with eight replicas.

Figure 3, Figure 4, Figure 5 and Figure 6 indicate that if we want to maintain the level of utilization

close to 40%, in order to prevent sudden peaks in the tweet arrival rate, the number of twitter filter bolts

must be close to 8 replicas and the number of sentiment analysis to cassandra bolts must be close to 8

replicas as well.

3139Authorized licensed use limited to: Carleton University. Downloaded on April 20,2024 at 14:10:15 UTC from IEEE Xplore. Restrictions apply.

Inostrosa-Psijas, Gil-Costa, Solar, Marin, and Wainer

Figure 6: Utilization per bolt with 8-times replicated twitter filter bolt (fixed) and different levels of

sentiment analysis to cassandra bolt replication: (a) no replication; (b) 8 replicas.

7 CONCLUSIONS

In this work, we simulated and evaluated a sentimental analysis application running on top of the Storm

stream processing platform. We selected the Storm platform as a case study because it has many use cases

and it is easy to integrate with other technologies, like database technologies. It also supports all the

desirable characteristics of a stream processing platform, such as fault tolerance, and it offers scalability.

We model each component of the application and how they interact to represent the task processing

flow. The application components are deployed on a distributed platform; therefore, we also simulated the

communication network, particularly a Fat-Tree network.

Our simulator is designed in a modular way, so each component representing a specific task to be

processed in the distributed platform can be easily replaced by other components. In the same way, we

can simulate different network topologies. We evaluate the performance of the application running on a

Storm platform. Experiments showed that our simulator is capable of reproducing the results achieved in

a real system. Moreover, our simulator shows how the application behaves as we increase the number of

replicas for specific components to avoid bottlenecks.

In our future work, we plan to simulate different topologies at the same time (already supported,

though) and include a fault injector to allow the evaluation of different fault tolerance strategies.

ACKNOWLEDGMENTS

This work has been partially supported by Fondecyt de Iniciación 11230961 from ANID, Chile. Part of

this work has been funded by INICI-UV UVA 20993 program from Universidad de Valparaíso, Chile.

REFERENCES

Al-Fares, M., A. Loukissas, and A. Vahdat. 2008. “A Scalable, Commodity Data Center Network Architecture”. ACM

SIGCOMM computer communication review 38(4):63–74.

Amarasinghe, G., M. D. de Assunção, A. Harwood, and S. Karunasekera. 2018. “A Data Stream Processing Optimisation

Framework for Edge Computing Applications”. In 2018 IEEE 21st International Symposium on Real-Time Distributed

Computing (ISORC), 91–98.

Amarasinghe, G., M. D. de Assuncao, A. Harwood, and S. Karunasekera. 2020. “ECSNeT++: A Simulator for Distributed

Stream Processing on Edge and Cloud Environments”. Future Generation Computer Systems 111:401–418.

Amini, L., H. Andrade, R. Bhagwan, F. Eskesen, R. King, P. Selo, Y. Park, and C. Venkatramani. 2006. “SPC: A Distributed,

Scalable Platform for Data Mining”. DMSSP ’06, 27–37. New York, NY, USA: Association for Computing Machinery.

Andrade, H. C. M., B. Gedik, and D. S. Turaga. 2014. Fundamentals of Stream Processing: Application Design, Systems, and

Analytics. New York, NY, USA: Cambridge University Press.

3140Authorized licensed use limited to: Carleton University. Downloaded on April 20,2024 at 14:10:15 UTC from IEEE Xplore. Restrictions apply.

Inostrosa-Psijas, Gil-Costa, Solar, Marin, and Wainer

Gil-Costa, V., E. Tapia, and M. Marin. 2016. “Asynchronous Approximate Simulation Algorithm for Stream Processing

Platforms (WIP)”. In Proceedings of the Summer Computer Simulation Conference, SCSC ’16, 52:1–52:6.

Higashino, W. A., M. A. Capretz, and L. F. Bittencourt. 2016. “CEPSim: Modelling and Simulation of Complex Event

Processing Systems in Cloud Environments”. Future Generation Computer Systems 65:122–139.

Hoseiny Farahabady, M., J. Taheri, A. Y. Zomaya, and Z. Tari. 2021a. “Energy Efficient Resource Controller for Apache

Storm”. Concurrency and Computation: Practice and Experience:e6799.

Hoseiny Farahabady, M. R., J. Taheri, A. Y. Zomaya, and Z. Tari. 2021b. “Graceful Performance Degradation in Apache Storm”.

In Parallel and Distributed Computing, Applications and Technologies: 21st International Conference, PDCAT 2020,

Shenzhen, China, December 28–30, 2020, Proceedings 21, 389–400. Springer.

Kaptein, M. 2014. “RStorm: Developing and Testing Streaming Algorithms in R”. The R Journal 6(1):123–132.

Kroß, J., and H. Krcmar. 2019. “Pertract: Model Extraction and Specification of Big Data Systems for Performance Prediction by

the Example of Apache Spark and Hadoop”. Big Data and Cognitive Computing 3(3):47.

Kulkarni, S., N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M. Patel, K. Ramasamy, and S. Taneja. 2015. “Twitter

Heron: Stream Processing at Scale”. In Proceedings of the 2015 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’15, 239–250. New York, NY, USA: Association for Computing Machinery.

Marzolla, M. 2004. “LibCppSim: A SIMULA-like, Portable Process-Oriented Simulation Library in C++”. In ESM 2004.

Marçal, Serrate 2017. Analysis of Twitter Streams with Kafka and Storm. https://serrate.net/2016/01/05/analysis-of-twitter-

streams-with-kafka-and-storm/, Accessed on April 12th, 2023.

Muhammad, A., and M. Aleem. 2021. “A3-Storm: Topology-, Traffic-, and Resource-Aware Storm Scheduler for Heterogeneous

Clusters”. The Journal of Supercomputing 77:1059–1093.

Muhammad, A., M. Aleem, and M. A. Islam. 2021, mar. “TOP-Storm: A Topology-Based Resource-Aware Scheduler for Stream

Processing Engine”. Cluster Computing 24(1):417–431.

Park, A. J., C.-H. Li, R. Nair, N. Ohba, U. Shvadron, A. Zaks, and E. Schenfeld. 2010. “Flow: A Stream Processing System

Simulator”. In Proceedings of the 2010 IEEE Workshop on Principles of Advanced and Distributed Simulation, PADS ’10.

Satzger, B., W. Hummer, P. Leitner, and S. Dustdar. 2011. “Esc: Towards an Elastic Stream Computing Platform for the Cloud”.

In 2011 IEEE 4th International Conference on Cloud Computing, 348–355. IEEE.

SimStream, SimStream GitHub repository. https://github.com/alonso-inostrosa/simstream, Accessed on April 12th, 2023.

Storm, Apache Software Foundation 2015. Companies Using Apache Storm. https://storm.apache.org/Powered-By.html,

Accessed on April 12th, 2023.

Toshniwal, A., S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat,

S. Mittal, and D. Ryaboy. 2014. “Storm@Twitter”. In Proceedings of the 2014 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’14, 147–156. New York, NY, USA: ACM.

Zaharia, M., T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. 2013. “Discretized Streams: Fault-Tolerant Streaming

Computation at Scale”. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13,

423–438. New York, NY, USA: Association for Computing Machinery.

AUTHOR BIOGRAPHIES

ALONSO INOSTROSA-PSIJAS received the Ph.D. degree from Universidad de Santiago, Chile. He is currently an Associate

Professor at the School of Informatics Engineering at Universidad de Valparaiso, Chile. His research interests are discrete-event

and parallel/distributed simulation. He can be contacted at alonso.inostrosa@uv.cl.

ROBERTO SOLAR holds a Ph.D. in High-Performance Computing from Universitat Autonoma de Barcelona, Spain. His

research interests include discrete-event simulation, agent-based modeling and simulation, and similarity search in metric spaces.

His e-mail address is. His email address is roberto.solar@usach.cl.

MAURICIO MARIN is a former researcher at Yahoo! Labs Santiago hosted by the University of Chile and currently a Full

Professor at the University of Santiago, Chile. He holds a Ph.D. in Computer Science from the University of Oxford, UK. His

research work is on parallel computing and distributed systems with applications in query processing and capacity planning for

Web search engines. His email address is mauricio.marin@usach.cl.

VERONICA GIL-COSTA received her Ph.D. in Computer Science, both from Universidad Nacional de San Luis (UNSL),

Argentina. She is a former researcher at Yahoo! Labs Santiago. She is currently an Associate Professor at the University of San

Luis and a researcher at the National Research Council (CONICET) of Argentina. Her email address is gvcosta@unsl.edu.ar.

GABRIEL WAINER received the Ph.D. degree from Université d’Aix-Marseille III. He is a Full Professor at Carleton

University. His current research interests relate to modeling methodologies and tools, parallel/distributed simulation, and real-

time systems. His e-mail is gwainer@sce.carleton.ca.

3141Authorized licensed use limited to: Carleton University. Downloaded on April 20,2024 at 14:10:15 UTC from IEEE Xplore. Restrictions apply.

