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ABSTRACT 

Stream processing platforms allow processing and analyzing real-time data. Several tools have been 

developed for these platforms to guarantee that the applications running on them are scalable, fast, and 

fault-tolerant and that they can be deployed on many processors. However, determining the proper 

number of processors suitable to hold a given stream processing-based software application is 

challenging, especially if the application is intended to serve a large user community. In this paper, we 

propose to model and simulate stream processing platforms for performance evaluation purposes. In our 

case study, we simulated a commonly used application for the analysis of Twitter streams with Storm. We 

evaluate its performance under different workloads. Our simulator supports profiling to measure various 

aspects of the application's performance. Results show that the simulator can replicate the metrics 

reported by the application running on a real platform with minimal error. 

1 INTRODUCTION 

Stream processing platforms are devised to manage substantial amounts of data from diverse sources, 

whether these are feeds in a social network, advertisement networks, businesses, or scientific applications. 

Usually, these systems require a real-time view of the data so human users can understand them. 

However, the high volume of data arriving from diverse sources makes it impossible to store these data, 

such as model-based on a data warehouse. In other words, stream processing platforms need to process 

large amounts of data within a few seconds, with very low latency and high throughput, to produce some 

knowledge or information out of the data. Therefore, the processing speed must be kept up with the 

incoming data rate while providing high-quality analysis of results as fast as possible. Additionally, the 

application components and the infrastructure must be fault-tolerant. 

Stream processing is a distributed computing method that supports gathering and analyzing large 

volumes of a heterogeneous data stream to assist real-time decision-making as explained in Andrade et al. 

(2014). Stream programs use message-passing in a collection of computers connected by data channels or 

979-8-3503-6966-3/23/$31.00 ©2023 IEEE 3130

20
23

 W
in

te
r S

im
ul

at
io

n 
C

on
fe

re
nc

e 
(W

SC
) |

 9
79

-8
-3

50
3-

69
66

-3
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
W

SC
60

86
8.

20
23

.1
04

07
84

0

Authorized licensed use limited to: Carleton University. Downloaded on April 20,2024 at 14:10:15 UTC from IEEE Xplore.  Restrictions apply. 



Inostrosa-Psijas, Gil-Costa, Solar, Marin, and Wainer 

 

 

links. Each computer includes a variety of processing units or processing elements (PEs) that are used to 

process and transfer data from its input message queue and produce results on its output queue. Each PE 

has an independent address space, while all dependencies between the processing units are made 

explicitly by message channels or links. Several stream processing platforms like Storm, Spark, Heron, 

Flink, Samza, and more have been developed. 

In this work, we model and simulate stream processing platforms to evaluate their performance under 

different situations. We used Apache Storm as a case study. Storm is a widely used stream processing 

engine. Storm focuses on extremely low latency and requires near real-time processing. As a result, it can 

process enormous quantities of data and deliver results with less latency than other solutions. Although 

Twitter (the company that originally developed Storm) replaced it with Heron, the Storm platform has 

been successfully used by other well-known companies like Spotify, Flipboard, the Weather Channel, 

WebMD.com, among many others. Furthermore, research is still ongoing on Storm, including scheduling 

algorithms and resource allocation mechanisms. See the work presented by Muhammad et al. (2021), 

Hoseiny Farahabady et al. (2021a), Muhammad and Aleem (2021), Hoseiny Farahabady et al. (2021b). 

Although this research focuses on Storm, our model and simulation tool can be adapted to other platforms 

because we use a modeling methodology based on the design of individual interconnected components 

that can be replaced according to the characteristics of the platforms, the simulated hardware that supports 

them. Similarly, the connections between the components are defined by the task flow. 

Our case studies use a Storm application of a Twitter stream analysis consisting of eight PEs, and 

communication among them is performed bottom-down. We aim to evaluate the platform’s performance 

under different workloads to detect bottlenecks. To this end, we present the SimStream tool for simulating 

stream processing applications running on a stream processing platform, in this case, Apache Storm. The 

scope of our simulator includes Apache Storm, the hardware of the multi-core cluster where it is 

deployed, and the communication network. Next, we validate our simulation tool against a real 

application implemented on Storm. Finally, we evaluate the utilization of each PE as we vary the arrival 

rate of the tweets and replicate the more computationally intensive processes. 

Results show that our simulator can be used as a testbed for predicting the performance of an 

application running on top of a stream processing engine with different levels of replication. 

This paper is organized as follows. Section 2 describes stream processing platforms, particularly the 

Apache Storm platform. Section 3 presents related works. Our proposed tool, SimStream, is presented in 

Section 4. Section 5 presents a case study and Section 6 presents the experimental results. Finally, we 

present our conclusions in Section 7. 

2 BACKGROUND 

Stream programming has been proposed as a flexible approach for processing data originating at various 

sources on a distributed cluster. However, the data stream arrives at unpredictable times and may have 

dynamic variations in traffic intensity. In this context, storing and organizing the incoming data 

conveniently to process them in batches can be very costly, given the massive volume of data and the 

number of computational resources required for processing them. Nevertheless, even if this is feasible, it 

is often desirable or even imperative to process the data as soon as it is detected, and to deliver results in 

real-time. 

To process data "as soon as it arrives", stream processing aims to process data in real-time in a fully 

integrated way to provide information and outcomes for consumers and end users. Also, it aims to 

integrate added information to support decision-making in the medium and long term. There are many 

stream processing platforms such as SPC (Stream Processing Core) as presented in Amini et al. (2006), 

Storm proposed by Toshniwal et al. (2014), Esc of Satzger et al. (2011), D-Stream of Zaharia et al. (2013) 

and, more recently, Heron presented by Kulkarni et al. (2015). In the following sections, we describe the 

main components of the Storm stream processing platform, which we used in our research. 
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2.1 Storm 

Apache Storm, described in Toshniwal et al. (2014), is a real-time, fault-tolerant, and distributed stream 

processing system developed by Twitter. Ever since its open-source release in 2011, the Apache 

Foundation have incubated Storm. Even though Twitter replaced Storm and it is now using Heron 

presented in Kulkarni et al. (2015), the platform has been successfully used by well-known companies 

like Spotify, Flipboard, the Weather Channel, WebMD.com, and others (Storm 2015). Similarly, 

researchers still devote their efforts to improving Storm’s efficiency. TOP-Storm is a scheduler for Storm 

that optimizes resource utilization and increases throughput by performing resource-aware task allocation 

(Muhammad et al. 2021). A3-Storm presented in Muhammad and Aleem (2021) is a scheduler 

implemented on top of Storm that optimizes resource usage in heterogenous clusters based on the 

topology of the applications and their traffic. The work of Hoseiny Farahabady et al. (2021a) focuses on a 

controlling strategy for optimizing the energy consumption of running applications. Hoseiny Farahabady 

et al. (2021b) have developed an elastic solution for resource sharing in Storm. 

Storm provides a set of general primitives for defining applications for performing real-time 

computation. A Storm application comprises five major components: tuples, streams, spouts, bolts, and 

topologies. A tuple is an ordered list of elements. For example, in Twitter, a tuple might be a text 

composed of the tweet name, followed by the tweet itself (e.g., < ”I3M2018”, ”Deadlineapproaching” 

>). A stream is a sequence of tuples, potentially unbounded. There is a sequence of arriving tuples, 

which form a stream, and these tuples are processed potentially one at a time. 

Storm applications are called topologies. A topology is a directed graph whose vertices correspond to 

processing elements or operators (called spouts and bolts), and edges represent the data flow among them. 

Topologies can contain loops, but in this case, the programmer must be careful not to create infinite loops 

where tuples can go around the system in endless processing. 

 

Figure 1: Logical layers of a Storm application. 

In a Storm topology, spouts correspond to the source of streams. Usually, tuples are captured from an 

external source like a crawler or a database. A spout can generate multiple streams simultaneously. On the 

other hand, bolts process streams by performing a given task or operation on each tuple. They process a 

large amount of data and process it fast. Typically, each bolt processes one input stream, but they can 

process multiple input streams as well, generating an output stream used to feed other bolts. Some 

operations that a bolt can perform are: 

• Filter: Forwards a tuple only if it satisfies a condition. 

• Joins: When receiving multiple streams, say A and B, it computes a cross product of all the tuples 

and streams A and B, and for every pair of tuples, one from A and one from B, it returns the 

results of the process if the pair of tuples satisfy a given condition. 

• Apply/transform: Modifies a tuple according to a function. 

• Ticker: Control tuples are emitted periodically at regular intervals. 

 

Figure 1 shows an example of a logical layer of a Storm topology. Here we have two spout processing 

units and four bolts processing units. The two spouts gather streams from various sources. Then, they 

send the incoming tuples forming streams to different bolts. The links between the processing units 

represent the flow of the data stream. 
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Several replicas - running in parallel into multiple processes or tasks - can be deployed to speed up 

bolt execution. Thus, incoming streams can be distributed among these tasks. The assignment of tuples 

among the bolt replicas (or tuple routing) is decided by a grouping strategy. Some of the most popular 

grouping strategies supported by Storms are the Shuffler Grouping, the Fields Grouping, and the All 

Grouping. The first distributes the tuples in a round-robin fashion over the bolt’s replicas. The second one 

groups a stream by a subset of its fields and sends each tuple to its corresponding group using a hash 

function. The last one, where all the tasks in the bolt receive all the input tuples, is helpful for the join 

operation. 

2.1.1 Storm Cluster 

In a Storm cluster, topologies are submitted to a head node that runs a daemon called Nimbus. The 

Nimbus is responsible for distributing and coordinating the execution of the topology. Then, Nimbus 

distributes the code of the application around the cluster so when a bolt is started in a computer of the 

cluster, Nimbus is responsible for sending the code for that bolt to that computer. Also, when a bolt is 

split up into multiple tasks, Nimbus decides which tasks run on which computer. 

Additionally, Nimbus is responsible for failure detection to potentially restart the tasks or the bolts on 

other computers of the cluster. A tuple is considered failed when its topology of resulting tuples fails to be 

processed within a given timeout. That is, when a tuple is emitted by the spout, the tuple has a message-id 

that will be used to identify the tuple later. Then, the tuple flows through the graph of bolts forming the 

topology of the application and when a tuple is fully processed, an ack method is called on the originating 

spout task with the message id. Likewise, if the tuple times out, a failure method is called on the spout 

and the tuple will be replayed. Note that a tuple will be acknowledged or failed by the exact same spout 

task that created it. 

The worker nodes run a daemon called Supervisor which listens for work assigned to its computer. 

The worker nodes execute the topology’s components (spouts and bolts). Each worker runs one or more 

executors inside a Java Virtual Machine, and executors are formed by one or more tasks. Note that tasks 

are executed by the actual work of a bolt or a spout. Each worker node keeps track of the tasks that are 

running at itself, so if any of these tasks crash, it can be either re-started, or the Supervisor can ask 

Nimbus for a new task that needs to be run in its place. Finally, Storms also use the Zookeeper system, 

which maintains the state of the cluster and coordinates the Nimbus and the Supervisors. 

3 RELATED WORK 

Simulation and stream processing platforms has been studied in the research literature in the area. In 

Amarasinghe et al. (2018), the authors present a simulator named ECSSim to place processing operators 

of the platform either on cloud nodes or edge devices. This simulator is extended in Amarasinghe et al. 

(2020), where they present a simulation toolkit named ECSNeT++ for stream processing platforms. The 

simulator is implemented on top of the network simulator OMNeT++. In both cases, the simulators are 
devised for Edge computing and IoT. Thus, it is not possible to use commodity switch-based networks 

like the Fat-Tree. In Kroß and Krcmar (2019), the authors propose a domain-specific language (DSL) to 

model the characteristics of Spark and YARN applications. Their proposal automatically extracts the 

model’s specifications and transforms them into an evaluation tool. 

In Gil-Costa et al. (2016), the authors proposed an asynchronous simulation protocol that can be 

executed in the S4 stream processing platform. This simulator was developed to simulate the execution of 

user queries in a Web search engine. The proposed simulator controls the virtual time advance at each 

Logical Process (LP), employing two barriers. The first barrier consists of a time window that allows the 

processing of events with timestamps within the time window. The second barrier is based on an oracle 

time barrier used to adaptively compute the value of the time window across the simulation. The two 

barrier-based mechanisms reduce the number of straggler events - in an asynchronous simulation - across 
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the LPs. Even though the case study of Gil-Costa et al. (2016) simulates a Web Search Engine, the 

authors mention the possibility of modeling and simulating a Stream Processing platform using this 

simulator. 

Flow, presented in Park et al. (2010), is a parallel and distributed platform for simulating stream 

processing applications. It does not include hardware or software components of the stream processing 

system. Instead, it is designed to capture the data flow at the application level. Flow uses a hybrid 

conservative synchronization approach, where local events are processed in LBTS (lower bound time 

stamp) order, whereas events spanning across super-processes resort to conservative synchronization. 

There are simulators for some stream processing cloud environments like CEPSim presented by 

Higashino et al. (2016). CEPSIm was used to study the scalability and performance of complex event 

processing (CEP) systems and the effects of different query processing strategies on cloud platforms. It is 

focused on the processing of queries. CEPSim was built on top of the CloudSim tool. RStorm (Kaptein 

2014) is an R package for developing and evaluating streaming algorithms. RStorm is a simulation 

package intended to help developers analyze and evaluate their streaming algorithms easily and without 

the difficulties of actual implementation to a given stream processing platform. RStorm resorts to Storm’s 

terminology and concepts, providing a graphical representation of streaming algorithms. However, this 

package analyzes the algorithm and does not include the associated hardware costs (like communication, 

multiple threads per node, etc.).  

4 SIMSTREAM SIMULATION TOOL 

The simulation model is implemented as a process-oriented simulator. Processes represent bolts/spouts in 

charge of tuples processing. Resources are artifacts such as the data of the incoming messages, global 

variables like the input queue of each process, the CPU, and the communication network. The simulation 

program is implemented using libCppSim (Marzolla 2004), where each process is implemented by a 

coroutine that can be blocked and unblocked during simulation. 

4.1 Simulation   

The operations hold(), passivate(), and activate() are used for this purpose. Thus, a coroutine 𝐶𝑖  can be 

paused for a given amount of time 𝛿𝑡 -which represents the duration of a task. Once the simulation time 

𝛿𝑡 has expired, the coroutine 𝐶𝑖  activates itself if a hold() operation was previously executed. Otherwise, 

the coroutine 𝐶𝑖  is activated by another coroutine 𝐶𝑗  using the activate() operation. This last case allows 

the representation of the interaction among the different components of the simulated platform. 

Our simulator includes the nodes of the topology. These nodes transfer tuples (data) from one to 

another as defined by the topology. Each node can play the role of a bolt or a spout. The nodes can be 

allocated into the same physical processor or into different processors. The allocation process is 

transparent to the application but involves different communication costs. Nodes located in the same 

physical processor communicate at a lower cost than nodes hosted by different processors. Each processor 

has cores, Ram, and Cache memory. The least recently used (LRU) replacement policy is used for both 

memories. The sizes of the memories are set by the parameters of the simulator. A function called 

schedule_processing(), is used to schedule the tasks of the bolts/spouts into the processor’s cores. 

Each processor has a network interface that divides the messages into packages before sending them 

through the communication network. Likewise, the network interface gathers the packages belonging to 

the same message upon reception. In this work, we simulate the switches of a Fat-Tree network described 

in Al-Fares et al. (2008), however, it can be easily replaced by other networks. 

The following characteristics are considered in our simulator: 

• Different topologies can be simulated simultaneously. Different users may deploy their 

applications into the same platform at the same time. 
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• Spouts and/or bolts can be deployed to the same machine or to different machines according to 

their communication pattern. 

• The machines of the simulated cluster can be heterogeneous. They may have different memory 

sizes and different numbers of cores, among others. 

• The communication between two processing elements (bolts/spouts) located in different machines 

is performed via a simulated Fat-Tree network. 

• A First Come First Service policy is used when choosing the next spout/bolt to be executed. 

• Tuples communicated among bolts follow the publish-suscribe pattern. In case of saturation, no 

tuples are dropped, instead they are queued at the publisher bolt. 

4.2 Communication Network 

We simulate the Storm platform deployed in a datacenter composed of N racks holding k processors each, 

which communicate to each other by means of a set of switches composing a Fat-Tree network topology 

as shown in Figure 2. This is a three-level network where switches and processing nodes are organized 

into PODs (Points of Delivery) which can be regarded as racks. Each POD consists of (𝑘/2)2   processing 

nodes and two layers of 𝑘/2 k-port switches from the two bottom layers. 

At the top, we have the Core switches, which provide inter-POD communication. At the bottom are 

the Edge switches, where the processing nodes are connected to the network. Finally, in the middle, there 

are the Aggregation switches. This type of network allows an elevated level of parallelism, avoids 

congestion, and allows fault tolerance by providing different routes for sent messages depending on their 

destination by means of a two-level routing table. 

4.3 Simulation Parameters 

Three configuration files are needed to set up the parameters of a simulation: one for the topologies, 

another for specifying the parameters of each spout/bolt, and a third optional file can be used to define 

different tuple arrival rates during the simulation. The topologies files consist of pairs of spout/bolts 

source and target of tuples. For specifying the parameters of each spout/bolt, the file must contain the 

name of each node of the defined topology and the node type (spout/bolt), the replication level, the 

grouping type, and the IP address of the machine where it is hosted (according to the Fat-Tree). If the 

node is a spout, the previous values are followed by the name of a random generation number function 

and its corresponding parameters for representing the average service time and, finally, the average arrival 

rate of tuples. If the node is a bolt, the following values are the number of output tuples for each tuple that 

is processed and the name of a random generation number function and its corresponding parameters for 

representing its average service time. The third file includes the arrival parameter and the simulation time 

when it should start. 

More details regarding this simulation model, configuration files format, and its code implementation 

can be found in our public SimStream GitHub repository. 

5 CASE STUDY 

In this paper, we simulate a popular real-time processing application example (Marçal 2017).The 

topology consists of two simple components: kafka producer - a simple producer in charge of reading 

tweets from the Twitter Streaming API and storing them into Apache Kafka -, and twitter processor - a 

Storm topology that reads tweets from Apache Kafka and processes them in a parallel fashion in order to 

perform, on one hand, compute sentiment analysis and, on the other hand, compute top-k hashtag. 

The Storm topology consists of the following components (shown in Figure 3): kafka spout – an 

Storm-specific adapter in charge of reading tweets from Kafka into the Storm topology, twitter filter – 
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bolt in charge of filtering out all non-English language tweets in order to properly apply the sentiment 

analysis algorithm, text sanitization - bolt in charge of text normalization in order to properly process  

 

Figure 2: 3-Layer Fat-Tree topology. 

tweets by the sentiment analysis algorithm, sentiment analysis - bolt in charge of scoring the tweet by 

each of its words using SentiWordNet classifier, sentiment analysis to cassandra – a bolt in charge of 

storing the tweets and its sentiment score into a Cassandra database, hashtag splitter – a bolt in charge 

of splitting the different hashtags and emitting a tuple per hashtag to the next bolt (hashtag counter), 

hashtag counter - bolt in charge of counting the number of occurrences of a hashtag, top hashtag bolt in 

charge of performing a ranking of the top-k hashtags by means of a sliding windows algorithm, and top 

hashtag to cassandra - bolt in charge of storing the top-k hashtags into a Cassandra database. Cassandra 

is a widely used open-source, distributed, scalable and elastic NoSQL database. 

 
Figure 3: Storm topology of the Twitter streams analyzer. 

6 EXPERIMENTAL RESULTS 

In this section, we present the evaluation of our proposed Storm simulator (SimStream) in terms of 

throughput, response times, and utilization. Experiments were performed in an Intel Xeon CPU E5-2650 

v2 2.60 GHZ (with 32 cores) and 128 GB of Ram, running Ubuntu 14.04.5 LTS. The simulator was 

implemented on top of the libcppsim library version 0.2.5 presented by Marzolla (2004), and it was 

compiled with GCC V.4.8.5. All the simulated bolts have been properly instrumented to measure and 

record tweet arrival times, bolts service times and the number of output tuples per bolt. 

The process executed by the stream application on the Storm platform has been deployed using the 

following technologies: messaging system - Apache Kafka (version 2.12 − 1.0.1), stream processing 

system - Apache Storm (version 1.1.1), and storage - Apache Cassandra (version 3.11.2). All 

components run over a Zookeeper (version 3.4.11) cluster. 

Figure 2.(a) and Figure 2.(b) show the tweet response times and the throughput (number of tweets 

processed per second), respectively. Both figures show the results of three Storm real executions 

compared to results obtained from our simulator (SimStream). We show the average results obtained 

with different execution of the simulations. Furthermore, SimStream allows generating random 

numbers by using two different mechanisms: curve fitting - which fits the given data (data sizes) by 

applying a maximum likelihood estimation method, and spline interpolation - which fits the given data 

by means of a piecewise polynomial function. Both mechanisms have been fed with logs obtained from 

isolated executions of the Storm topology. 
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In Figure 2.(a), we observe that real and simulated tweet response times have a similar tendency. 

These results can be contrasted with mean squared error (MSE) reported in Table 1. On one hand, the 

curve fitting approach reports MSEs close to 0.00001 with a mean of 0.00013474 and a standard 

deviation of 0.00009726. On the other hand, the spline interpolation approach shows a resemble 

behavior with a mean of 0.00013237 and a standard deviation of 0.00009635. In Figure 2.(b), we observe 

that real and simulated throughput have a similar behavior through time. Notice that the throughput is 

almost constant, that is because the available resources to process the data is limited. Thus, even though 

the arrival stream changes (increases), the resources will be saturated and the output of the system will 

reach its maximum. Furthermore, these results can be contrasted with MSE reported in Table 2. Both 

approaches, curve fitting and spline interpolation, show a mean close to 0.00001 and a standard 

deviation close to 0.00009. Therefore, the results show that our SimStream tool accurately simulates 

the Storm platform’s behavior. 

 

Figure 2: (a) Tweet processing response time. (b) Throughput. 

Table 1: Mean squared error obtained for the tweet processing time. 

Storm execution Curve fitting Spline interpolation 

1 0.0000626465 0.0000609966 

2 0.0001996262 0.0001967055 

3 0.0001419408 0.0001394227 

 Mean Stddev Mean Stddev 

 0.00013474 0.00009726 0.00013237 0.00009635 

Table 2: Mean squared error obtained for the throughput. 

Storm execution Curve fitting Spline interpolation 

1 0.0001636884 0.0001242584 

2 0.0003988999 0.0004130434 

3 0.0001734087 0.0001712610 

 Mean Stddev Mean Stddev 

 0.00024533 0.00018821 0.00023619 0.00021914 

6.1 Level of Bolt Utilization without Replication 

The tweet arrival rate, represented by a negative exponential distribution, has been parametrized by a 

location parameter and a non-negative scale parameter. The initial scale parameter value has been 

extracted from a Storm log by applying a maximum likelihood estimation method. The value of the scale 
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parameter has been progressively decreased to emulate changes in the tweet arrival rate. Figure 3 shows 

the level of utilization per bolt varying the tweet arrival rate. The utilization of a bolt is simply the ratio of 

the average time the bolt was busy and the total period of observation, thus the utilization is calculated as 

𝑈𝑏 =  𝐵𝑏/𝑅𝑏/𝑇, where 𝐵𝑏 is the sum of time in which the bolt was busy, 𝑅𝑏 is the number of replicas of 

the bolt, and 𝑇 is the total simulated time. 

In Figure 3, we can observe that the twitter filter bolt tends to be saturated as the tweet arrival rate 

increases. This behavior occurs because of the high number of incoming processing requests per time unit 

arriving at this bolt, turning it into a bottleneck. Furthermore, we can see that the sentiment analysis to 

cassandra bolt is tightly coupled with the twitter filter bolt since as the level of utilization of the twitter 

filter bolt is increased the level of utilization of the sentiment analysis to cassandra bolt is increased as 

well (close to 46% for high tweet arrival rates). We must consider that not all tweets processed by the 

twitter filter bolt are emitted to the next bolt and that is why the sentiment analysis to cassandra bolt is 

not fully saturated, but for being a disk access bolt is a bottleneck by itself. Unlike the sentiment analysis 

to cassandra bolt, the top hashtag to cassandra bolt does not write on disk on demand since disk 

accesses are managed by tick tuples (the database is periodically updated each ∆𝑡), and that is why its 

level of utilization is maintained as the tweet arrival rate is increased. 

 

Figure 3: Utilization per bolt using the standard configuration (no replication). 

6.2 Level of Bolt Utilization with Replication 

Figure 6 shows the level of utilization per bolt varying the tweet arrival rate and the number of twitter 

filter bolt replicas. Figure 4.(a) shows the impact of two twitter filter bolt replicas over the topology. We 

observe that the twitter filter bolt and the sentiment analysis to cassandra bolt tend to have similar 

behavior in terms of the level of utilization, close to 100% for high tweet arrival rates. Figure 4.(b) shows 

the effect of eight twitter filter bolt replicas over the topology. We observe that the level of utilization of 

the twitter filter bolt decreased to a value lower than 27% for all cases. Nevertheless, we also observe 

that the level of utilization of the sentiment analysis to cassandra bolt is drastically increased in 

comparison to the level of utilization of the twitter filter bolt, which indicates the need for replication of 

the sentiment analysis to cassandra bolt. In general, as we add twitter filter bolt replicas, the level of 

utilization of twitter filter bolt is decreased. Still, the level of utilization of the sentiment analysis to 

cassandra bolt tends to be increased. This behavior is produced because as we increase the number of 

twitter filter bolt replicas, the number of incoming tweets to be processed by the next bolts is 

incremented proportionally to the number of replicas. 

Figure 5 shows the level of utilization per bolt varying the tweet arrival rate and the number of 

sentiment analysis to cassandra bolt replicas, and with four replicas of the twitter filter bolt. Figure 

5.(a) shows the level of utilization per bolt of the Storm topology with two sentiment analysis to 
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cassandra bolt replicas. The level of utilization of the sentiment analysis to cassandra bolt decreases in 

comparison to results reported in Figure 4. Nevertheless, the level of utilization of the sentiment analysis 

to cassandra bolt is still close to 100% for high tweet arrival rates. Figure 5.(b) shows the level of 

utilization per bolt of the Storm topology with eight sentiment analysis to cassandra bolt replicas, 

respectively. Results show that the level of utilization of the sentiment analysis to cassandra bolt is 

decreased to a value close to 23%. Even so, the level of utilization of the twitter filter bolt is maintained 

close to 100% for high tweet arrival rates. 

 

Figure 4: Utilization per bolt with different levels of twitter filter bolt replication (a) 2-times replicated 

and (b) 8-times replicated. 

 

Figure 5: Utilization per bolt with 4-times replicated twitter filter bolt (fixed) and different levels of 

sentiment analysis to cassandra bolt replication: (a) 2-times replicated, (b) 8-times replicated. 

Figure 6 shows the level of utilization per bolt varying the tweet arrival rate and the number of 

sentiment analysis to cassandra bolt replicas and fixing the number of twitter filter bolt replicas to 

eight. Figure 6.(a) shows a reduction in terms of the level of utilization of the sentiment analysis to 

cassandra bolt by using two replicas but is still close to 100% for high tweet arrival rate. Figure 6.(b) 

shows how the level of utilization of the sentiment analysis to cassandra bolt is decreased to values 

close to 24% with eight replicas. 

Figure 3, Figure 4, Figure 5 and Figure 6 indicate that if we want to maintain the level of utilization 

close to 40%, in order to prevent sudden peaks in the tweet arrival rate, the number of twitter filter bolts 

must be close to 8 replicas and the number of sentiment analysis to cassandra bolts must be close to 8 

replicas as well. 
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Figure 6: Utilization per bolt with 8-times replicated twitter filter bolt (fixed) and different levels of 

sentiment analysis to cassandra bolt replication: (a) no replication; (b) 8 replicas. 

7 CONCLUSIONS 

In this work, we simulated and evaluated a sentimental analysis application running on top of the Storm 

stream processing platform. We selected the Storm platform as a case study because it has many use cases 

and it is easy to integrate with other technologies, like database technologies. It also supports all the 

desirable characteristics of a stream processing platform, such as fault tolerance, and it offers scalability. 

We model each component of the application and how they interact to represent the task processing 

flow. The application components are deployed on a distributed platform; therefore, we also simulated the 

communication network, particularly a Fat-Tree network. 

Our simulator is designed in a modular way, so each component representing a specific task to be 

processed in the distributed platform can be easily replaced by other components. In the same way, we 

can simulate different network topologies. We evaluate the performance of the application running on a 

Storm platform. Experiments showed that our simulator is capable of reproducing the results achieved in 

a real system. Moreover, our simulator shows how the application behaves as we increase the number of 

replicas for specific components to avoid bottlenecks. 

In our future work, we plan to simulate different topologies at the same time (already supported, 

though) and include a fault injector to allow the evaluation of different fault tolerance strategies. 
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